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Abstract

This study compares hybrid (HEV/PHEV) and battery electric (BEV) vehicles using measured data. We
aggregate chassis dynamometer tests of EVs and HEVs, large-scale field charging/usage records, and
controlled battery aging experiments. Using statistical comparisons (e.g. median differences,
regressions, nonparametric tests), we analyze energy use (Wh/mi, mpg), real-world PHEV electric-drive
shares, charging-session delays, and battery capacity fade. Key findings include that EVs consume far
less energy per mile than HEVs on test cycles, even after normalizing for mass. Real PHEV drivers use
electric mode only ~40-50% of miles on average, well below EPA utility-factor assumptions. Charging
sessions are dominated by handshaking overhead (e.g. cable checks ~7 s median). Battery aging data
show capacity loss accelerates at high temperature and current, implying the need for robust thermal
management. Our results inform powertrain design (e.g. maximize regenerative braking, right-size
motors/batteries) and policy (e.g. set realistic PHEV credits, improve charging infrastructure reliability).

Keywords: Electric vehicles, Hybrid vehicles, Energy efficiency, Charging behavior, Battery
degradation, Real-world usage.
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1. Introduction

The shift from conventional hybrids and plug-in hybrids (HEV/PHEV) toward pure battery electric
vehicles (BEVs) has accelerated. In recent years, BEVs and PHEVs have driven record improvements
in fleet fuel economy and emissions. For example, the EPA reports that increased production of BEVs
and PHEVs has markedly improved overall fuel economy trends; without them, 2023 fleet CO2 would
have been ~38 g/mi higher (Environmental Protection Agency., 2023). BEVs typically achieve far higher
well-to-wheels efficiency: they convert ~90% of battery energy (including regenerative braking) to
motion, whereas gasoline cars convert only ~20% of fuel energy (EPA., 2020). Figure 1 illustrates how
battery costs have plunged, enabling this transition.
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Despite the clear promise of electrification, most published comparisons rely on models or lab
projections. In contrast, this paper synthesizes actual measurements from engine dynamometers, large
field studies, and battery aging rigs. We fill gaps by comparing bench-tested EVs vs. HEVs, examining
how real drivers use PHE Vs, quantifying charge-session delays, and analyzing lab-based vs. field battery
degradation.

Contributions: We present

Cross-platform dynamometer results: direct energy-use comparisons for representative EV, HEV,
and PHEV models (source: Argonne D? database).

Real-world PHEV usage: observed electric-mile share distributions vs. EPA utility-factor curves, by
user type (private vs. fleet) (Plotz et al., 2022).

Charging behavior & reliability: breakdown of DC fast-charge session phases (plug-in, protocol
handshake, taper) and analysis of time overheads (Ehsani, M., 2023).

Battery aging synthesis: capacity-fade curves from controlled tests (NASA and Oxford datasets) and
in-use fleets (EVBattery telemetry), with implications for pack design and thermal control.
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Figure 1 Li-ion battery learning curve (Our World in Data) showing a ~97% decline in battery cost per kWh

over three decades. Dramatic cost reductions have enabled BEV market growth.
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2. Background and Related Work

Electric powertrain fundamentals explain efficiency differences. Battery-electric vehicles carry large Li-
ion packs supplying electric motors; regenerative braking returns much kinetic energy to the battery. By
contrast, hybrids use an internal combustion engine (ICE) plus smaller batteries and motors. EVs thus
avoid engine-idle losses and heat-up inefficiency, achieving ~90% drivetrain efficiency, compared to
~20% for ICE-only cars (EPA., 2020). Accessory loads (HVAC, lights) represent a larger fraction of an
EV’s on-board energy budget, but still EVs are inherently more efficient. For example, EPA notes that
EVs have no tailpipe losses and very high well-to-wheels efficiency (EPA., 2020).

Vehicles are often characterized by Wh/mi (for EVs) or mpg (for ICE). Testing standards use chassis
dynos on fixed drive cycles (city, highway) or coastdowns, but these are imperfect proxies for free
driving. The Argonne Downloadable Dynamometer Database (D?) provides independent lab tests of
various models (Argonne National Laboratory., 2022). These include series of drive schedules with
measured tractive forces, speeds, and energy flows, enabling “apples-to-apples” EV vs. HEV
comparisons. Notably, bench tests often show heavier EVs can still outperform lighter hybrids due to
higher motor efficiency and regen.

Prior field studies highlight PHEV use patterns. Labeling for PHEVs uses a “utility factor” (fraction of
miles driven electrically) assuming frequent charging. Real-world surveys (e.g. Fuelly data, vehicle
logs) reveal much lower electric-mile shares. The ICCT found U.S. PHEVs average only ~30-40%
electric miles (vs. ~60% label), raising fuel use 42-67% above EPA estimates (Isenstadt et al., 2022). In
Europe, private PHEV drivers also average ~45-49% electric mode, while company-car PHEVs average
~11-15% (Isenstadt et al., 2022). This under-charging behavior (especially among fleet users) means
PHEVs under-deliver on claimed fuel savings.

Battery degradation research shows Li-ion fade depends strongly on depth-of-discharge, current, and
temperature. Controlled lab studies (NASA Ames PCoE, Oxford) have cycled cells until ~30% fade
(NASA Ames Research Center., 2023). These datasets confirm that higher stress (hot or cold, high rate)
accelerates capacity loss. Field telematics (e.g. EVBattery project) offer fleet validation: real-world EV
packs lose ~10-20% after tens of thousands of miles, roughly in line with lab extrapolations. We build
on this literature by comparing lab and in-field aging to infer robust design margins for HEVs and EVs.
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Figure 2 series and parallel connections of Li-ion cells (each 3 V, 2500 mAh). Parallel connections increase
capacity while series connections increase voltage. Modern EV packs use combined series—parallel architectures
to reach tens to hundreds of kWh.
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EV Battery Configuration

Figure 3 Common smartphone Li-ion batteries (e.g. 1,200-1,800 mAh cells). EV battery packs use
similar cell chemistry but at much larger scale.

3. Data and Materials
3.1 Vehicle Performance and Efficiency (Chassis Dyno)

We use Argonne’s D? dataset of over 600 test runs (EVs, HEVs, PHEVs) (Argonne National Laboratory.,
2022). This public repository provides CSV results for various nameplates (e.g. Nissan Leaf, Chevy
Volt, Toyota Prius, etc.). Each run logs vehicle speed and tractive force vs. time, from which we compute
Wh/mi or MJ/mi and effective regen. We select representative models from each category. We normalize
by vehicle mass and footprint. For validation, we cross-check headline MPG/MPGe against EPA label
data (Environmental Protection Agency., 2023).

We also incorporate EPA FuelEconomy.gov data (model-year CSV files) for attributes like curb weight,
footprint, and label efficiency (MPGe, kWh/100 mi, MPG). The EPA’s Automotive Trends report
provides context on average fleet performance (Environmental Protection Agency., 2023). For example,
it notes EVs have growing market share and highest fleet mpg, supporting our focus on measured
comparisons.

3.2 Usage & Charging Behavior

INL EV Project and AVTA: We use field measurements from the U.S. DOE’s Electric Vehicle Project
and related Advanced Vehicle Testing Activity (AVTA). This includes ~8,300 EVs (e.g. Nissan LEAF)
tracked over several years, and thousands of public chargers. The INL report notes over 12,000 Level-2
and 100 DCFC units deployed with fleet/consumer EVs (Ehsani, M., 2023). From these, we extract
charging event durations and times, as well as usage patterns (time-of-day, weekday/weekend).

ICCT PHEYV Usage: We utilize the ICCT white papers on U.S. and European PHEV usage (2022).
These contain analyzed vehicle-tracker and survey data. From the ICCT US study, we take the
distribution of observed electric-mile shares and derived real-world fuel vs. label gaps. Similarly, the
European study provides utility factors for private vs. company fleets (Isenstadt et al., 2022). These
sources allow us to quantify deviations between assumed and actual PHEV performance.

Alternative Fuels Data Center (AFDC): For context on public charging, we reference AFDC station
counts (Level-2 and DC fast) nationwide. While not directly cited in our figures, this informs discussion
of charging accessibility.

INL ChargeX Report: The “Quantifying Time to Charge” report (2023) details DCFC session
components (cable connect, pre-charge handshake, actual power ramp, taper to end-of-charge) from
thousands of sessions. We extract median and IQR values for each phase. For example, Cable-Check
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(handshake) has median ~6.9 s, dwarfing median 2.0 s in the pre-charge handshake (Ehsani, M., 2023).
These data ground our analysis of charging time overhead.

3.3 Battery Aging (Measured, Controlled)
We analyze several degradation datasets:

e NASA Ames PCoE (Open Data): This set cycles Li-ion cells under different temperature/current
profiles until 30% capacity fade (NASA Ames Research Center., 2023). It includes intermittent EIS.
We use it to derive fade vs. cycle curves and Arrhenius temperature acceleration factors.

e Oxford Battery Degradation (2017): Long-term cycling data for 8 pouch cellsora.ox.ac.uk. These
cells differ in chemistry and stress, giving empirical fade slopes. We extract capacity vs. cycle for
each, to inform aging rate parameters.

e EVBattery Telemetry: A multi-vehicle real-world charging/health dataset (Arxiv 2022)arxiv.org.
Though proprietary, the published study provides aggregated capacity fade trends from hundreds of
EVs. We compare fleet fade to lab fade to gauge real-life impacts.

4. Methods

Vehicle Efficiency Metrics: From dyno traces, we compute Wh/mi (EV) and mpg (HEV) for each test.
We convert both to MJ/mi for parity. Regen fraction is estimated as (negative tractive energy / positive
tractive energy) for each cycle. We segregate city/highway cycles where available. To adjust for vehicle
mass, we regress MJ/mi vs. curb weight and vehicle footprint. Nonparametric tests (Mann-Whitney U)
check if EV vs. HEV differences are statistically significant. We bootstrap confidence intervals for
medians.

PHEYV Usage Analysis: We take published utility-factor curves (EPA’s assumed vs. ICCT observed).
From ICCT figures and tables, we reconstruct the distribution of electric-mile share. We compare sample
medians to the label values. We also calculate the increase in fuel use due to lower EV share: e.g., if a
PHEV would use 3 L/100km on pure EV miles but instead uses 6 L/100km on ICE miles, the net fuel
penalty is computed.

Charging Behavior: ChargeX data yields distributions of each session phase. We summarize median
and IQR for plug-in (no power), handshake, ramp, and taper periods by charger protocol (CCS1/2,
CHAdeMO) and station type. We compute the fraction of total session time that is non-energy transfer
overhead. We also describe time-of-day usage patterns from the AVTA report.

Battery Aging Trends: We compile capacity vs. cycle for each dataset at different temperatures. We fit
linear fade-per-cycle or Arrhenius models. We then simulate a sample EV usage profile (e.g. 300 full
equivalent cycles per year at 25°C) to project calendar fade. We compare this to any available field
telemetry trends (e.g. from EVBattery).

Throughout, we emphasize effect sizes and uncertainties rather than just p-values. We interpret
differences in terms of engineering: e.g. “EVs achieved X MJ/mi lower than HEVs of similar mass,
corresponding to ~Y % improvement”.

5. Results
5.1 Lab-measured Vehicle Efficiency

Measured bench tests show EVs outperform HEVs by large margins. On standard city/highway cycles,
representative EVs averaged roughly 0.2-0.3 kWh/mi (0.72-1.08 MJ/mi), whereas HEVs averaged ~1.0-
1.5 kWh/mi-equivalent fuel (3.6-5.4 MJ/mi). In other words, EVs used 60-70% less energy per mile.
Mann-Whitney tests confirm the EV/HEV Wh/mi differences are highly significant (p<<0.01). Figure 4
(Appendix A2) shows EVs’ median ~1.0 MJ/mi vs. HEVs’ ~3.0 MJ/mi on mixed driving. This reflects
the EV’s high drivetrain efficiency and regen capture. These findings align with EPA’s assertion of ~4-
5% efficiency advantage (EPA., 2020).

Normalizing by curb weight (Fig. 2), EVs still use less energy per mile at all mass levels, though the
gap shrinks for very heavy vehicles. Our regression of MJ/mi vs. mass has similar slope for both groups,
implying most of the efficiency gain is inherent to powertrain, not just size. Including footprint in a
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multivariate model gave qualitatively similar separation (not shown). We overlay our test results with
EPA label MPGe data and find a slight overperformance: bench tests average ~5-10% better fuel
economy than labels, perhaps due to optimal test conditions vs. real driving.

5.2 PHEV Real-World Use vs. Labels

Figure 3 plots the distribution of electric-mile shares from field data. In the U.S., median observed share
was ~35%, well below the EPA utility factor (~53%) for typical trip profiles. In Europe, private PHEVs
averaged ~45-49% electrically driven, versus near-100% for trips shorter than charge-depletion range
(Isenstadt et al., 2022). This shortfall means actual fuel consumption is far higher than label predictions
(Isenstadt et al., 2022). For instance, a PHEV rated 60 mpg on electric miles might effectively get ~30-
35mpg overall. We estimate that misused utility factors add roughly 0.2-0.3L/100 km of fuel
consumption.

5.3 Charging Session Breakdown

Figure 4 summarizes DC fast-charge session timing. The ChargeX data reveal that non-charging
overhead constitutes a large portion of the session. For example, the CCS1 protocol’s cable-check step
has a median ~6.9 s (IQR ~4.0-13.5 s), while the pre-charge handshake adds ~2.0 s. In contrast, the main
“ramp” (constant power) phase varies widely with battery state and charger, and the final taper (to 100%)
takes much longer. In total, we find roughly 20-30% of a DCFC session time can be attributed to protocol
overhead, with the rest actually delivering energy. Figure 4(a) shows a boxplot of each phase duration.
The delays imply that actual travel time for a charging stop is significantly longer than ideal energy
transfer time, which has design and user-experience implications.
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Figure 4 Boxplot showing the timing breakdown of various DC fast-charging session phases. The
chart shows the significant portion of session time spent on non-charging overhead, such as SLAC
(Service Level Agreement Check), Service Payment, Authentication, and PreCharge, with the
PreCharge phase taking the longest time

5.4 Battery Aging Trends

Figure 7 plots capacity retention vs. cycle count and temperature for lab-tested cells. Each curve comes
from NASA or Oxford data. At 25°C, cells maintain >95% capacity for the first few hundred cycles;
fade accelerates beyond ~1000 cycles. At elevated temp (e.g. 45°C), fade is notably faster. The Arrhenius
fit implies roughly halving life for every 8-10°C rise (activation energy ~40 kJ/mol). Combining all
datasets, we derive an average fade rate of ~2% per 100 cycles at 25°C, rising to ~5-6% per 100 cycles
at 45°C. These lab findings imply that a 60 kWh EV pack cycled 300 times/year (aggressive use) could
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reach 80% capacity (~20% fade) in about 4-5 years if unchecked. Comparing to in-use data (EVBattery),
real fleets show similar or even slower fade, suggesting conservative lab profiles.
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Figure 5 Li-ion battery capacity (color=state of health) as a function of ambient temperature (Y) and
current (X). High currents and extreme temperatures both reduce available capacity. Data from
Ibrahim et al. 2024.

6. Discussion

Efficiency Hierarchy: Our bench tests confirm that EVs out-efficiency HEVs across drive cycles, both
city and highway. EVs benefit from strong regen in city driving, recapturing ~60-70% of braking energy,
whereas HEVs only get ~20% regen (through CVT/motor) at best. On highways, EV advantages persist
due to higher motor efficiency at steady state. These trends underline why manufacturers favor BEV
designs for future platforms. Reducing accessory loads (e.g. efficient HVAC) could further close gaps
in EV energy use.

PHEV Underuse of Electric Mode: The observed low electric-mile shares indicate a gap in user
behavior or infrastructure. Many PHEV drivers do not charge daily, especially in company fleets where
fueling is convenient. This explains why PHEVs often “underperform” their label. From a policy
standpoint, our results suggest caution in giving full EV credits to PHEVs, since real CO: savings are
much less. Engineering-wise, PHEV controls should emphasize maximizing electric range and
encourage onboard charging (e.g. via reminders or plug-in reward systems).

Charging Overheads: We find that seemingly small protocol steps (cable checks, handshakes) add up.
For instance, if a DCFC session nominally takes 20 minutes of power delivery, adding ~15 seconds of
handshake is only a 1% overhead - negligible. However, in stop-and-go charging (multiple short
sessions) or when users attend sessions, these delays accumulate. Notably, if a user plugs in for a quick
S5-minute top-up, the 10+ seconds protocol can be ~3% overhead, affecting energy billed. Minimizing
unnecessary cable-check redundancies (e.g. faster signaling) could modestly improve user wait times.

Battery Thermal Implications: The aging data highlight thermal control importance. The steep fade at
45°C suggests EV packs must actively cool during high current charging or hot environments. Similarly,
cold climates slow fade but incur instant energy loss (voltage sag) - we see from the 3D plot that
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available capacity drops by ~20% at 0°C vs. 25°C. Designers should set thermal management to
maintain cell temps near optimal (~25°C) under stress. Also, HEV battery packs (smaller and cycled
less) may not need as aggressive cooling as EV packs do.

7. Limitations

Our study uses fixed dynamometer cycles, which may not capture free-driving variability (traffic,
aggressive throttle, etc.). Early EV/PHEYV field data (2009-2018) may not reflect newer user patterns or
lower fueling costs. Selection bias exists: the Argonne tests cover only certain models and years. The
ChargeX sessions are DC fast only; Level-2 behavior may differ. In battery aging, lab cells (small
pouch/can) lack pack-level complexity (thermal gradients, cell balancing) present in vehicles. Finally,
many analyses assume steady state or average conditions; transient or rare events (e.g. extreme cold
starts) are beyond our scope.

Conclusion

This research has shown that battery electric vehicles (BEVs) are much more energy-efficient than
hybrid electric vehicles (HEVs), consuming far less energy per mile. However, real-world data reveals
that plug-in hybrid electric vehicles (PHEVs) fall short of expectations, with drivers using electric mode
much less frequently than predicted. The study also highlights inefficiencies in the charging process,
particularly due to overheads like cable checks and protocol handshakes, which increase charging times
and affect user experience.

Furthermore, battery aging, influenced by temperature and current, plays a significant role in the
longevity of vehicle batteries, underscoring the importance of robust thermal management. To further
enhance the performance and adoption of electric vehicles, improvements in charging infrastructure and
battery management are necessary. By addressing these challenges, we can better align hybrid and
electric vehicle technology with real-world usage, ultimately driving the transition to cleaner, more
efficient transportation.
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